INFLUENCE OF PARENT MATERIALS AND LAND USE ON SOIL CARBON SEQUESTRATION IN SOUTHERN NIGERIA

BY DR. O. K. IBE, PROF.. G. U. NNAJI DR. K. C. UZOMA DR. I. O. ONUOHA

DEPARTMENT OF SOIL SCIENCE FACULTY OF AGRICULTURE UNIVERSITY OF AGRICULTURE AND ENVIRONMENTAL SCIENCES, UMUAHWO, IMO STATE

APRIL, 2025

INTRODUCTION

Carbon sequestration and its effect on climate change and agric is a major concern globally.

*IPCC (2016) options for mitigation of atmospheric CO_2 concentrations by the agricultural sector:

✓ Reduction of agriculture-related emissions,
 ✓ Creation and strengthening of C sinks in the soil, and
 ✓ Production of bio-fuels to replace fossil fuels.

OBJECTIVES OF THE STUDY

Specific objectives were to:

➤ determine the effects of parent materials and land use on selected soil physico-chemical properties.

➢ Determine the effect of parent materials and land use on soil organic C pool.

MATERIALS AND METHODS

- The study was conducted at:
- ✓ FRIN, Isieke
- ✓ NIHORT,Okigwe
- ✓ AIRBDA, Agbala
- ✓ NDBDA, Kpong and✓ NDBDA, Isiokolo
- In the States of Abia, Imo,
 Rivers and Delta,
 Southeastern Nigeria.

Figure 8: Georeferenced Map of the study area showing sampling locations

CLIMATE

➢Average annual rainfall Southsouth-2500mm.

- Southeast -2350mm.
- Average annual maximum temperature-32^oC.
- ➢Average annual minimum
 - temperature- 21°C and
- ≻annual range- 11° C.
- ≻(NIMET,2008, NDBDA 2019,

AIRBDA 2019).

Natural Vegetation, Land use and Cultural practices

>Vegetation is secondary tropical rainforests.

≻Land utilization types were arable croplands, Horticultural croplands and managed forestry tree plantations.

Cultural practices include: Mixed Cropping, Manual Weeding, Longer Stand Rotation, Mulching, Pruning, Monocropping, Crop Rotation.

Application of Agrochemicals and Irrigation Systems.

LABORATORY ANALYSIS Physical Analysis:

- Particle size distribution was determined by the hydrometer method (Gee and Bander, 1986).
- Bulk density was obtained by the cylindrical core method (Blacke and Hantge, 1986)

Chemical Analysis

- Soil pH was determined in distilled water and potassium chloride solution at ratio 1:1 and 1:2.5 soil/water suspension using pH meter (McLean, 1982).
- SOC content were quantified by Walkley and Black Method (Nelson and Sommers, 1982).
- TN content was determined by the Macrokjeldahl digestion method (Bremmer and Mulvaney, 1982).
- ♦ CEC was determined by the NH₄OAC (Ammonion acetate) pH 7 method (Thomas, 1982).

SOC POOL

SOC pool was calculated using the equation of Lal et al. (1998):

$$MgCha^{-1} = (\% C x Pb x d x 10^{-4}m^{2}ha^{-1})$$

100

Where:

% C

Pb

d

- MgCha⁻¹ = Megagram carbon per hectare (1 Mg = 10^{6g})
 - = Percentage of C given by laboratory results
 - = Soil bulk density (Meggram per cubic meter)
 - = Depth in meters)

STATISTICAL AND SPATIAL ANALYSES Descriptive statistics

Experimental design was $2 \times 5 \times 3$ factorial in RCBD.

≻The factors were parent materials, land use and depths.

Separation of treatment means for statistical

RESULTS AND DISCUSSION

PHYSICO-CHEMICAL CHARACTERIZATION

Sand particles are dominant size fraction in both LUTs, 49-85%, followed by clay with 9-40%.

Textural class ranged from loamy sand to sandy loam at the surface and sandy clay loam to sandy clay at the subsurface horizons.

- The soils were extremely acid to strongly acid (pH 4.4-5.5) in soils under MTC, but very strongly acid to moderately acid (pH 4.5-5.6) in soils under CCC. This supports the findings of Osodeke (2017) and Sullerman et al. (2019).
- Available phosphorus across the major LUTs ranged from moderate

	undes of prije		ent pro	06			Bearing	eropian	<u>) د</u> %	<u>~)</u> 6	cm	olkoʻi		
Parent material	Land use	Depth (cm)	Sand	90 Sile	Clay	Textural	BD (g/cm ³)	рН (H ₂ O)	soc	TN	ĸ	CEC	P (mgKg 1)	SOC
CDS EDINI ISIEVE	DDE DCD	0.10	75	0	16	CIA33 CT	1.40	5.50	3.63	0.51	0.04	18.01	15.25	133.40
CFS-FRIN-ISIERE	rrr-ror	20.20	75	9	10	SL.	1.40	1.00	3.05	0.38	0.07	16.11	10.75	107.60
		20-39	/1	11	18	SL act	1.38	4.90	2.20	0.20	0.02	16.11	12.90	22.00
		40-100	69	3	28	SCL	1./8	4.60	5.20	0.00	V.VZ	10.11	15.60	00.00
SHL-NIHORT-														
OKIGWE	MTC-IWP	0-19	75	14	11	SL	1.62	5.0	2.11	0.10	0.05	25.00	18.33	104.10
		20-39	65	22	13	SL	1.81	5.5	3.10	0.20	0.06	22.00	18.33	104.10
		40-100	49	11	40	SC	1.84	5.5	3.06	0.31	0.20	22.00	19.26	326.80
ICS-AIRBDA-														
AGBALA	MTC-OPP	0-19	75	12	13	LS	1.50	4.9	3.80	0.07	0.62	26.28	28.07	104.10
		20-39	73	10	17	SL	1.63	4.9	3.40	0.08	0.08	23.12	19.10	111.80
		40-100	71	4	25	SCL	1.68	4.8	3.20	0.08	0.06	24.00	17.03	313.80
CPS-NDBDA-				-					2.60	0.13	0.06	20.17	19.37	72.50
KPONG	$MTC-PP_{K}$	0-19	77	10	13	SL	1.33	4.702						
		20-39	77	6	17	SL	1.33	4.40	2.80	0.13	0.07	17.06	16.07	73.80
		40-100	79	6	15	SL	1.50	4.70	1.80	0.09	0.07	16.89	17.27	172.20
ALV-NDBDA-														
ISIOKOLO	MTC-PP ₁	0-19	85	6	9	LS	1.41	4.78	3.56	0.11	0.19	18.56	20.00	95.60
		20-39	75	10	15	SL	1.85	4.79	2.84	0.13	0.19	14.20	17.00	96.00
		40-100	75	4	21	SCL	2.15	4.82	1.57	0.10	0.12	15.20	15.10	217.90

la she and a second

Keys:

BD=

Bulk density Cation Exchange Capacity CEC =

TN=

Total Nitrogen Soil Organic Carbon SOC =

Phosphorus Ρ =

Κ Potassium =

Land Utilization type LUT =

		%						%		cmolkg-1				
Parent material	Land use	Depth (cm)	Sand	Silt	Clay	Textural Class	BD (g/cm³)	pH (H₂O)	SOC	TN	K	CEC	P (mgKg-1)	SOC Pool
CPS-FRIN-ISIEKE	$CCC-CMT_F$	0-19	79	11	10	SL	1.56	5.6	1.31	0.25	0.04	11.12	18.33	33.80
		20-39	75	7	18	SL	1.38	5.2	1.34	0.11	0.08	10.81	20.00	31.70
		40-100	66	5	30	SCL	1.66	4.9	0.80	0.34	0.01	12.15	26.67	58.20
SHL-NIHORT-														
OKIGWE	CCC-CMM	0-19	77	12	11	SL	1.70	4.7	0.87	0.13	0.05	13.00	26.63	27.80
		20-39	65	7	18	SL	1.88	4.9	0.57	0.40	0.05	16.00	18.54	23.60
		40-100	60	13	27	SCL	2.05	5.1	1.03	0.13	0.04	12.00	16.38	98.70
ICS-AIRBDA-														
AGBALA	CCC-CMO	0-19	80	5	15	SL	1.68	4.5	1.80	0.04	0.08	18.60	23.83	37.20
		20-39	70	5	21	SCL	1.62	4.8	0.91	0.13	0.07	16.40	21.32	26.60
		40-100	71	8	21	SCL	1.93	4.7	0.80	0.14	0.06	13.68	15.27	87.50
CPS-NDBDA-														
KPONG	CCC-CMY	0-19	81	8	11	LS	1.56	4.66	0.95	0.18	0.10	16.12	10.37	21.40
		20-39	77	6	17	SL	1.66	4.87	0.59	0.09	0.11	13.18	13.27	17.80
		40-100	78	7	15	SL	1.90	4.53	0.57	0.10	0.09	13.02	9.03	61.80
ALV-NDBDA-			~ ~							~				
ISIOKOLO	$CCC-MMT_1$	0-19	80	11	9	LS	1.70	4.78	3.36	0.11	0.19	18.00	22.00	26.40
		20-39	80	9	11	SL	1.72	4.95	2.84 1.57	0.15	0.19	14.85	15.00	02.00
		40-100	75	8	17	SL	2.15	4.82	1.57	0.10	0.12	13.15	16.00	197.80

Table 2: Mean Values of physico-chemical properties of soils under continuously cultivated croplands (CCC)

Keys: LUD =

JD = Land Use Duratiom

BD = Bulk density

CEC = Cation Exchange Capacity

TN = Total Nitrogen

SOC = Soil Organie Carbon

P = Phosphorus

K = Potassium

LUT = Land Dilization type

SOIL ORGANIC CARBON POOL ↔MTC had higher (p<0.05) SOC pool than CCC soils.

The SOC pool in MTC Soil was within the ideal range for mitigating climate change and environmental quality control.

FAO (2017), Lal (2014), Post and Kwom (2002) postulated > 120mgcha⁻¹ as the threshold level for surface soil (0-100cm).

Table 4: Mean values of Soil Organic Carbon (MgCha⁻¹) pool under different parent materials of managed tree crop lands of the study areas

			Depth (cm)		
Parent material	Land use	0-19	21-39	40-100	Mean Total
CPS-FRIN-Isieke	PPF-PCP	133.40	107.60	334.80	575.80
SHL-NIHORT-	MTC-IWP	88.00	104.10	326.80	518.90
Okigwe					
ICS-AIRBDA-	MTC-OPP	102.10	111.80	313.80	527.70
Agbala					
CPS-NDBDA	MTC-PPIC	72.50	73.80	172.20	318.50
Kpong					
ALV-NDBDA	MTC-PPI	95.60	96.00	217.90	409.50
Isiokolo					
Mean Total		652.60	633.30	1664.60	2950.50

 Table 5:
 Mean values of Soil Organic Carbon (MgCha⁻¹) pool under different parent

 materials of continuously cultivated croplands of the stud area

	Depth (cm)						
Parent material	Land use	0-19	21-39	40-100	Mean Total		
CPS-FRIN-Isieke	CCC-CMT _F	33.80	31.70	58.20	123.70		
SHL-NIHORT-	CCC-CMM	27.80	23.60	98.70	150.10		
Okigwe							
ICS-AIRBDA-	CCC-CMO	37.20	26.60	87.50	151.30		
Agbala							
CPS-NDBDA	CCC-CMY	21.40	17.80	61.80	101.00		
Kpong							
ALV-NDBDA	CCC-CMT ₁	56.40	62.60	197.80	316.80		
Isiokolo							
Mean Total		176.60	162.30	504.00	842.90		

SOIL ORGANIC CARBON POOL CONT'D

Significant (p<0.05) influence of depth on SOC pool were observed in both land uses.</p>

The highest (212.70 mgCha⁻¹) was observed at 40-100cm soil depth in SHL-NIHORT –Okigwe, whereas the lowest (45-80 mgCha⁻¹) was observed at 20-39cm soil depth in CPS-NDBDA-Kpong.

There was greater soil carbon accumulation in forest soils when compared with other soils.

SOIL ORGANIC CARBON POOL CONT'D

Land use, depth and parent material; each significantly (p<0.05) influence SOC pool.</p>

There were interactions (p<0.05) between land use and depth, land use and parent material on SOC pool.</p>

✤ Also, significant (p<0.05) interactions of land use, depth and parent material on SOC pool was observed.</p>

 \bigstar This is in line with the findings of Zhie et al. (2009)

	Land use						
Parent Materia	Depth (Cm)	MTC	CCC	Mean	Sub mean		
CPS-FRIN-Isieke	0-10	102.60	33.86	68.20			
	20-39	107.60	31.70	69.60			
	40-100	334.80	58.20	196.50			
Sub Mean		181.70	41.20		111.50		
SHL-NIHORT-Okigwe	0-10	88.00	27.80	57.90			
	20-39	104.10	23.60	63.90			
	40-100	326.80	98.70	212.70			
Sub Mean		172.90	50.00		111.50		
ICS-AIRBDA-Agbala	0-10	102.10	37.20	69.70			
	20-39	111.80	26.60	69.20			
	40-100	313.80	87.50	200.70			
Sub Mean		175.90	50.40		113.20		
CPS-NDBDA-Kpong	0-10	72.50	21.40	46.90			
	20-39	73.20	17.80	45.80			
	40-100	172.20	61.80	117.00			
Sub Mean		106.20	33.70		69.90		
ALV-NDBDA-Isiokolo	0-10	95.60	56.40	76.00			
	20-39	96.00	62.60	79.30			
	40-100	217.90	197.80	207.80			
Sub Mean		136.50	105.60		121.00		
Total		154.60	56.20				
LSD (0.05) for Land use					7.40 *		
LSD (0.05) for Depth					6.93 ^{**}		
LSD (0.05) for Parent Material					11.11**		
LSD (0.05) for Land use x Depth					11.14**		
LSD (0.05) for land use x Parent Material					15.28		
LSD (0.05) for Lepth x Parent Material LSD (0.05) for land use y Denth y Depart Material					15.91 25 22**		
LSD (0.03) for land use x Depth x Parent Material					23.23		

Table 5: Effect of land use, depth and parent materials on SOC pool (MgCha-1) under MTC and CCC across the study locations

CONCLUSION

➢Soil organic carbon sequestration is a function of parent material, land use, depth, and soil aggregate sizes.

- Soils under long term managed tree/plantation crops LUTs enhanced carbon sequestration relative to soils under continuously cultivated arable crop.
- Amongst the Managed tree crops LUT C sequestration followed this trend: Pine forest> oilpalm plantation> Irvingia wombulu> plantain plantation.
- ➤Coastal plain sands of FRIN-Isieke had highest amount of SOC pool (575.80 mgCha⁻¹) while the alluvial soils of NDBDA –Isiokolo gave the lowest (409.50 mgha⁻¹).
- ➢Pine forest, Oil palm, Irvingia, Plantain plantations and Citrus orchard soils sequestered more carbon across the soil depths and therefore hold a considerable

➤The soil conservation practices associated with continuously cultivated croplands under the different parent materials in the studied area should be reevaluated because they are inadequate to maintain the qualities of the soils on sustainable basis with special emphasis on organic mater content, aggregation and aggregate stability.

- \triangleright Pine forest offered greatest potentials in carbon sequestration and mitigation of climate change. Therefore, pine plantation should be encouraged in the study area.
- Among all the tree croplands studied, soils under oil palm developed highest structural stability with very high SOC pool at 0-100cm depth.
- > Therefore, oil palm plantation should be established for the conservation of soil threatened by physical degradation in southern Nigeria.

FOR

